Logarithmic Sobolev inequality for log-concave measure from Prékopa-Leindler inequality

نویسنده

  • Ivan Gentil
چکیده

We develop in this paper an amelioration of the method given by S. Bobkov and M. Ledoux in [BL00]. We prove by Prékopa-Leindler Theorem an optimal modified logarithmic Sobolev inequality adapted for all log-concave measure on Rn. This inequality implies results proved by Bobkov and Ledoux, the Euclidean Logarithmic Sobolev inequality generalized in the last years and it also implies some convex logarithmic Sobolev inequalities for large entropy. Résumé Dans cet article nous proposons une amélioration de la méthode développée par S. Bobkov et M. Ledoux dans [BL00]. Nous prouvons par le théorème de Prékopa-Leindler une inégalité de Sobolev logarihmique, optimale et adaptée à toutes les mesures log-concaves sur Rn. Cette inégalité implique les résultats de Bobkov et Ledoux, les inégalités de Sobolev logarithlmique de type Euclidien généralisées ces dernières années et enfin cetaines inégalités de Sobolev logarithmiques de type convexe pour les grandes entropies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality

We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on Rn, with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly conve...

متن کامل

Lower bounds for the Prékopa-Leindler deficit by some distances modulo translations

We discuss some refinements of the classical Prékopa-Leindler inequality, which consist in the addition of an extra-term depending on a distance modulo translations. Our results hold true on suitable classes of functions of n variables. They are based upon two different kinds of 1dimensional refinements: the former is the one obtained by K.M. Ball and K. Böröczky in [4] and involves an L-type d...

متن کامل

Generalization of an Inequality by Talagrand, and Links with the Logarithmic Sobolev Inequality

We show that transport inequalities, similar to the one derived by Talagrand [30] for the Gaussian measure, are implied by logarithmic Sobolev inequalities. Conversely, Talagrand’s inequality implies a logarithmic Sobolev inequality if the density of the measure is approximately log-concave, in a precise sense. All constants are independent of the dimension, and optimal in certain cases. The pr...

متن کامل

Functional Inequalities for Gaussian and Log-Concave Probability Measures

We give three proofs of a functional inequality for the standard Gaussian measure originally due to William Beckner. The first uses the central limit theorem and a tensorial property of the inequality. The second uses the Ornstein-Uhlenbeck semigroup, and the third uses the heat semigroup. These latter two proofs yield a more general inequality than the one Beckner originally proved. We then ge...

متن کامل

Brunn - Minkowski Inequality

– We present a one-dimensional version of the functional form of the geometric Brunn-Minkowski inequality in free (noncommutative) probability theory. The proof relies on matrix approximation as used recently by P. Biane and F. Hiai, D. Petz and Y. Ueda to establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentials, that are recovered ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008